
Parallel Scripting for Science
Applications at the Petascale

and Beyond

Mike Wilde
wilde@mcs.anl.gov

Computation Institute, University of Chicago
and Argonne National Laboratory

www.ci.uchicago.edu/swift 1

2

IEEE COMPUTER, Nov 2009

Overview

•  Parallel scripting as a model for large-scale
computing

•  An architecture for petascale parallel scripting
–  Swift
–  Collective data management
–  Resource provisioning and fast task dispatch
–  POSIX operating systems

•  Application examples

3

Swift is…

•  A language for writing scripts that:
–  Process large collections of persistent data
–  with large and/or complex sequences of

application programs
–  on diverse distributed systems
–  with a high degree of parallelism
–  persisting over long periods of time
–  surviving infrastructure failures
–  and tracking the provenance of execution

4

A simple Swift script

1  type imagefile; // Declare a “file” type.
2 
3  app (imagefile output) flip (imagefile input) {
4  {
5  convert "-rotate" 180 @input @output ;
6  }
7 
8  imagefile stars <"orion.2008.0117.jpg">;
9  imagefile flipped <"output.jpg">;
10 
11  flipped = flip(stars);

5

Parallelism via foreach { }
1  type imagefile; // Declare a “file” type.
2 
3  (imagefile output) flip(imagefile input) {
4  app {
5  convert "-rotate" "180" @input @output;
6  }
7  }
8 
9  imagefile observations[] <simple_mapper; prefix=“orion”>;
10  imagefile flipped[] <simple_mapper; prefix=“orion-flipped”>;
11 
12 
13 
14  foreach obs,i in observations {
15  flipped[i] = flip(obs);
16  }

Name outputs based on index

Process all dataset members in parallel
6

Map inputs from local directory

Why script in Swift?

•  Write scripts that are high-level, simpler, and
location-independent: run anywhere
–  Higher level of abstraction makes a workflow script

more portable than “ad-hoc” scripting

•  Coordinate execution on many resources over
long time periods
–  This is very complex to do manually – Swift

automates it

•  Enables restart of long running scripts
–  Swift tracks jobs in a parallel script completed

7

Swift programs
•  A Swift script is a set of functions

–  Atomic functions wrap & invoke application programs
–  Composite functions invoke other functions

•  Data is typed as composable arrays and structures
of files and simple scalar types (int, float, string)

•  Collections of persistent file structures are mapped
into this data model as arrays and structures

•  Members of datasets can be processed in parallel
•  Statements in a procedure are executed in data-flow

dependency order and concurrency
•  Variables are single assignment
•  Provenance is gathered as scripts execute

8

Application: 3o Protein structure prediction
1.  type Fasta; // Primary protein sequence file in FASTA format
2.  type SecSeq; // Secodary structure file
3.  type RamaMap; // “Ramachandra” mapping info files
4.  type RamaIndex;
5.  type ProtGeo; // PDB-format file – protein geometry: 3D atom coords
6.  type SimLog;
7. 
8.  type Protein { // Input file struct to protein simulator
9.  Fasta fasta; // sequence to predict structure of
10.  SecSeq secseq; // Initial secondary structure to use
11.  ProtGeo native; // 3D structure from experimental data when known
12.  RamaMap map;
13.  RamaIndex index;
14.  }
15. 
16.  type PSimCf { // Science configuration parameters to simulator
17.  float st;
18.  float tui;
19.  float coeff;
20.  }
21. 
22.  type ProtSim { // Output file struct from protein simulator
23.  ProtGeo pgeo;
24.  SimLog log;
25.  }

9

Protein structure prediction

1.  app (ProtGeo pgeo) predict (Protein pseq)
2.  {
3.  PSim @pseq.fasta @pgeo;
4.  }
5. 
6.  (ProtGeo pg[]) doRound (Protein p, int n) {
7.  foreach sim in [0:n-1] {
8.  pg[sim] = predict(p);
9.  }
10.  }
11. 
12.  Protein p <ext; exec="Pmap", id="1af7">;
13.  ProtGeo structure[];
14.  int nsim = 10000;
15.  structure = doRound(p, nsim);

10

Protein structure prediction

1  (ProtSim psim[]) doRoundCf (Protein p, int n, PSimCf cf) {
2  foreach sim in [0:n-1] {
3  psim[sim] = predictCf(p, cf.st, cf.tui, cf.coeff);
4  }
5  }

6  (boolean converged) analyze(ProtSim prediction[], int r, int numRounds)
7  {
8  if(r == (numRounds-1)) {
9  converged = true;
10  }
11  else {
12  converged = false;
13  }
14  }

11

Protein structure prediction

1.  ItFix(Protein p, int nsim, int maxr, float temp, float dt)
2.  {
3.  ProtSim prediction[][];
4.  boolean converged[];
5.  PSimCf config;
6. 
7.  config.st = temp;
8.  config.tui = dt;
9.  config.coeff = 0.1;
10. 
11.  iterate r {
12.  prediction[r] =
13.  doRoundCf(p, nsim, config);
14.  converged[r] =
15.  analyze(prediction[r], r, maxr);
16.  } until (converged[r]);
17.  }

12

Protein structure prediction
1.  Sweep()
2.  {
3.  int nSim = 1000;
4.  int maxRounds = 3;
5.  Protein pSet[] <ext; exec="Protein.map">;
6.  float startTemp[] = [100.0, 200.0];
7.  float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];
8.  foreach p, pn in pSet {
9.  foreach t in startTemp {
10.  foreach d in delT {
11.  ItFix(p, nSim, maxRounds, t, d);
12.  }
13.  }
14.  }
15.  }
16. 
17.  Sweep();

13

10 proteins x 1000 simulations x
3 rounds x 2 temps x 5 deltas

= 300K tasks

Protein SEQ
Len

Class ST TUI Lowest
RMSD (Å)

DeBartolo
RMSD (Å)

Protein Len Class ST TUI Lowest
RMSD

(Å)

1af7 69 α 15 25 3.77 2.5 1dcj 72 α/β 15 25 8.75
50 3.60 50 9.11
10
0

3.77 10
0

7.22

25 25 3.20 25 25 8.34
50 3.78 50 7.69
10
0

3.01 10
0

8.94

1r69 61 α 15 25 3.20 2.4 1ubq 73 α/β 15 25 6.68
50 4.09 50 7.05
10
0

3.87 10
0

6.00

25 25 3.76 25 25 6.88
50 2.94 50 8.29
10
0

3.87 10
0

8.01

T1af7

Protein Lengt
h

ST TUI Lowest RMSD
(Å)

DeBartolo RMSD (Å)

T1af7 69 25 100 2.07 2.5
T1b72 50 25 100 1.41 1.6
T1r69 61 25 100 2.11 2.4

T1r69 T1b72

17
*Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid)
 and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

CIM-EARTH: Modeling uncertainty

Workflow
Status

and logs

swift
command

launcher

launcher

f1

f2

f3

Worker Nodes

App
a1

App
a2

Swift parallel scripting architecure

SwiftScript

App
a1

App
a2

Data

f1 f2 f3

site
list

app
list

Provenance
data

19

Environment for Grid scripting

Grid Protocols

Grid Resources at UW

Grid
Storage

Grid
Middleware

C
om

puting
C

luster

Grid Resources at ANL
Grid

Middleware

C
om

puting
C

luster

Grid Resources at UCSD

Grid
Middleware

C
om

puting
C

luster
Grid Client

Application
User

Interface

Swift & Grid
Middleware

Resource,
Workflow
And Data
Catalogs

Grid
Storage

Grid
Storage

Swift runs on the grid client or “submit host”
•  Sends jobs to one or more grid sites using GRAM and Condor-G
•  Sends files to and from grid sites using GridFTP
•  Directory to locate grid sites and services: (ReSS)
•  Can also run on local hosts, or directly on a local cluster
•  Can overlay a faster scheduling mechanism (Coasters, Falkon)

20

Swift:
scripting language, task coordination,
throttling, data management, restart

Falkon:
ultra-fast task dispatch and load
balancing over processor sets

ZeptoOS:
full Linux with fork/exec, dynamic ld and
torus/collective net access

Swift
scripts

Shell
scripts

Command
lists

applications

Collective data management:
broadcast of large common datasets,
scatter and gather of small files

Dataset
s

Architecture for petascale scripting

Small, fast, local
memory-based filesystems

Falkon client
(load

balancing) Shared
global

filesystem

Swift script Falkon services
on BG/P IO
Processors BG/P Processor sets

Architecture for petascale scripting

Collective data management is
critical for petascale

•  Applies “scatter/gather” concepts at the file
management level

•  Seeks to avoid contention, maximize
parallelism and use petascale interconnects
–  Broadcast common files to compute nodes
–  Place per-task data on local (RAM) FS
–  Gather output into larger sets (time/space)
–  Aggregate small local FS’s into large striped FS

•  Still in research – topic of new EAGER grant 23

Performance: Molecular dynamics on BG/P

24
935,803 DOCK jobs with Falkon on BG/P in 2 hours

Performance: SEM for fMRI on Constellation

25
418K SEM tasks with Swift/Coasters on Ranger in 41 hours

Performance: Proteomics on BG/P

26
4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes

Summary
 Clean separation of logical/physical concerns

–  Mapper-based specification of logical data structures
+ Concise specification of parallel programs

–  Simple scripting language with iteration, etc.
+ Efficient execution

–  On distributed and petascale resources
–  Karajan+Falkon/Coasters: Grid interface, lightweight dispatch,

pipelining, clustering, provisioning
+ Rigorous provenance tracking and query

–  Records provenance data of each job executed
 Improved usability and productivity

–  Demonstrated in numerous applications

http://www.ci.uchicago.edu/swift
27

To learn more…

•  www.ci.uchicago.edu/swift
–  Quick Start Guide:

•  http://www.ci.uchicago.edu/swift/guides/quickstartguide.php

–  User Guide:
•  http://www.ci.uchicago.edu/swift/guides/userguide.php

–  Introductory Swift Tutorials:
•  http://www.ci.uchicago.edu/swift/docs/index.php

28

http://www.ci.uchicago.edu/swift

Acknowledgments
•  Swift effort is supported in part by NSF grants OCI-721939, OCI-0944332,

and PHY-636265, NIH DC08638, and the UChicago/Argonne Computation
Institute

•  The Swift team:
–  Ben Clifford, Allan Espinosa, Ian Foster, Mihael Hategan, Ioan Raicu, Sarah

Kenny, Mike Wilde, Justin Wozniak, Zhao Zhang, Yong Zhao
•  Java CoG Kit used by Swift developed by:

–  Mihael Hategan, Gregor Von Laszewski, and many collaborators
•  Falkon software

–  developed by Ioan Raicu and Zhao Zhang
•  ZeptoOS

–  Kamil Iskra, Kazutomo Yoshii, and Pete Beckman
•  Scientific application collaborators and users

–  U. Chicago Open Protein Simulator Group (Karl Freed, Tobin Sosnick, Glen
Hocky, Joe Debartolo, Aashish Adhikari)

–  U.Chicago Radiology and Human Neuroscience Lab, (Dr. S. Small)
–  SEE/CIM-EARTH: Joshua Elliott, Meredith Franklin, Todd Muson
–  PTMap: Yingming Zhao, Yue Chen

29

